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My mathematical research is in the area of combinatorics, with an emphasis on algebraic
graph theory. The process in which I study combinatorial objects involves applying modern
experimental techniques using state of the art computer algebra packages, like Magma and
GAP, to find promising evidence for conjectures of interest. I then go on to prove these
conjectures.

The underlying techniques that I use are very general and involve applying symmetry
hypotheses. In order to apply these techniques, the combinatorial object that I want to
construct must have an underlying group. Thus, I make a weak symmetry hypothesis about
small subgroups of the ambient group, not assumed to be acting nicely, and seek interesting
outcomes experimentally. The experimental process, as well as theory, leads to the hypothe-
ses. The hypotheses are not so much a priori as informed by a cycle of experimentation and
theory. This technique allows for the rapid abandonment of unpromising lines of thinking;
it is known in the literature as the spiral approach. Experiment feeds back into theory that
sharpens algorithms. This, in turn, allows for more experimentation, leading to a spiraling
process. In particular, the techniques I use are effective across a broad range of problems,
which gives me versatility. These techniques can also be used for undergraduate research
projects.

I. Research Synopsis

As previously mentioned, my area of study is algebraic graph theory. More specifically,
I construct new strongly regular graphs. A strongly reqular graph is a graph with constant
numbers of neighbors of: a vertex, an edge, and a pair of vertices that are not joined. These
constants, together with the number of vertices, are called the parameters of the graph. For
example, the graph with vertices the subsets of size two of a set of size 5, joined whenever
they are disjoint is a famous strongly regular graph called the Petersen graph: it has 10
vertices; each vertex has 3 neighbors; each edge has 0 neighbors, and each pair of vertices
that are not joined has 1 common neighbor. In summary, it has parameters (10,3,0,1). Two
different images of the Petersen graph can be found above.

[ utilize two different symmetry techniques when constructing new strongly regular graphs.
Nevertheless, both techniques follow the same experimental procedure that was previously
outlined and the underlying connection between all results boils down to finite geometry.
Furthermore, all the graphs I have constructed have much larger parameters than that of
the Petersen graph.

The first approach exploits the symmetry hypothesis by applying finite vector spaces. In



this case, the underlying graph is the Cayley graph. This means that there is a finite vector
space V that can be identified with the vertices, and the neighbors N of the zero vector
determine the graph. Because the graph is undirected, N is closed under negatives. I can
then strengthen this hypothesis to /N being closed under all non-zero scalars, so that N de-
termines a set X of points in the projective space PV. Through the creation of X, the graph
I'(X) is defined. The vertices of I'(X') are V', and two points in V', say v and w, are adjacent
if, and only if, < v —w >€ X. This procedure is reflective of basic undergraduate linear
algebra. The issue now is determining whether or not I'(X) is a strongly regular graph. The
resulting graph will be strongly regular if, and only if, the set of neighbors of the zero vector
is the union of a set X of points of the corresponding projective space PV which has two
intersection sizes with hyperplanes. This is due to a theorem of Delsarte from 1968 (which
also gives connections to error-correcting codes in this case) [1].

In this situation, I have constructed a number of strongly regular graphs with new param-
eters by finding appropriate further symmetry hypotheses. For instance, in the case where
V is three-dimensional and the underlying field has order ¢?, assuming that PSL(2,q) is
admitted, has been fruitful. This approach has led to nine new strongly regular graphs with
six of them corresponding to graphs with previously unknown parameters [7]. Under these
hypotheses, I have also constructed an infinite family with the same parameters as the Paley
graphs when V' is of dimension six [5].

An alternative fruitful symmetry hypothesis has been to construct graphs with the same
parameters as previously known strongly regular graphs I' admitting classical groups. The
new graphs have smaller automorphism groups than that of I', which are also subgroups of
the classical groups in question. The idea is that symmetry replaces edges. For non-linear
classical groups of Lie rank two, these graphs I' are the point graphs of generalized quad-
rangles. A generalized quadrangle is a bipartite graph of diameter four and girth eight. For
a graph to be bipartite, its vertices must be divided into two disjoint sets such that every
edge connects a vertex in one set to a vertex in the other. The girth of a graph is the length
of the shortest cycle contained in the graph, while the diameter is the largest number of
vertices which must be traversed in order to travel from one vertex to another. Using a
particular family of generalized quadrangles, a new family of strongly regular graphs has
been constructed [6].

Generalized quadrangles turn up in my research in two other ways: generalizing a con-
struction of Godsil and Hensel from finite geometric objects called ovoids of generalized
quadrangles to give more strongly regular graphs [2], and using ovals (another object in
finite geometry) to construct infinite families of strongly regular graphs with the same pa-
rameters as point graphs of strongly regular graphs, in joint work with Stan Payne [3]. Thus
a number of concepts from finite geometry (such as two intersection sets, generalized quad-
rangles, ovoids and ovals) underlie many of my constructions. However, this is inessential.
The methods work without the underlying geometry. It is only a useful conceptual scaffold-
ing.

2. Future Work

Using the previously mentioned techniques, I have obtained numerous leads on new
strongly regular graphs, which still need to be analyzed [4]. Ideally, the analysis will lead
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to more infinite families. In addition to that, I need to prove that the constructions found
using generalized quadrangles does, in fact, lead to new infinite families of strongly regular
graphs. I would also like to consider other groups for known strongly regular graphs to see
if I can obtain new graphs.

In addition to these projects, I am extremely interested in working on projects with under-
graduate students. A major benefit of the methods I use, is that they are widely applicable
in many areas of combinatorics. For example, these techniques can be applied to codes,
designs, and distance-regular graphs. These objects, as well as many other combinatorial
objects, consist of very little overhead. This translates well to undergraduate projects. I
especially think that projects on codes have the potential to spark a lot of undergraduate
interest, as both pure and applied mathematicians find them interesting. This is definitely
an avenue I would like to explore.

Furthermore, my master’s research dealt with Ramsey theory, specifically finding 2-color
disjunctive Rado numbers for sets of equations [8]. This is an area I would like to explore
in further detail as well. These problems also translate well to undergraduate projects.
Stemming from my master’s work, I would like to investigate the 3-color disjunctive Rado
number for the same set of equations. I can also alter one equation by adding a constant and
investigate that. I think that working on projects like these with undergraduate students is
feasible and potentially fruitful.

Lastly, I would like to conduct educational research as well. While teaching at Black
Hills State University, we implemented a new course design for the remedial math courses,
which significantly increased pass rates without compromising the material. I am inclined
to pursue course development and implement changes, as necessary, at other universities.
While completely overhauling a course is not always feasible, making small changes within a
course can also lead to positive outcomes. While at Colorado State University, I, along with
two professors and another graduate student, analyzed, with the aid of statistical software,
the types of students enrolling in Calculus for Physical Sciences I. One of the goals of the
analysis was to help instructors pinpoint areas of student weakness. For example, if I can
determine whether or not students are coming in with a sufficient algebraic background, I
can tailor my lectures accordingly. I would like to continue with such analysis, solidifying
positive and effective teaching techniques within the realm of mathematics.
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